Новейшие разработки по повышению эффективности аскорбиновой кислоты в лечении онкологии
Ранее известный ученый Лайнус Полинг привел научные данные положительного влияния аскорбиновой кислоты (АК) на замедление ракового процесса. Казалось еще немного и новация будет внедрена в практику. Прошли годы… и посыпались научные опровержения. Некоторые специалисты это объясняют тем, что аскорбиновая кислота при онкологии принималась больными людьми в виде таблеток. Поэтому в самой опухоли ее концентрация была невысока. Тем не менее, эта идея нашла реабилитацию в исследованиях на грызунах.
Обратите внимание на действенный способ в лечении онкологии
Я рекомендую бороться с раком следующим образом
Опыт лечения рака содой достаточно любопытный. Тем не менее я выработал свою методику, проверенню и эффективную
Юглон – базовое средство, особенно эффективное при иммунодефицитных состояниях
Акан – препарат с имунномодулирующим и противоопухолевым воздействием
Экстракт по Гарбузову – препарат сделан на основе известного тодикларка, но здесь более удачное соотношение компонентов. Разработан лично мной.
Энерговит – содержит ряд компонентов, которые с укреплению организма и сопротивлению болезни
Льняной Урбеч – источник Омега-3. Ранее я использовал льняное масло, но отказался от него в пользу урбичей – так масло в более естественном виде
Если Вам требуется помощь или консультация – звоните нам в офис. Не стесняйтесь, для меня работа это в первую очередь возможность помочь людям! 7-(862)-271-02-37 (пн-пт, 9.00-18.00). Также можете написать мне на почту vitauct@yandex.ru
Экспериментальные данные на животных в пользу применения АК при онкологии.
Приведу исследования М. Пойдок по раку в Мерсихерст Колледже в Эри (Пенсильвания), где была проведена серия опытов, в которых мышам с привитыми опухолями кололи АК (аскорбат). Первый эксперимент дал многообещающие результаты, опухоли у мышей опытной группы развивались значительно медленнее. Затем, как это часто бывает в экспериментальной биологии, эти результаты перестали воспроизводится, то есть делая точно такие же опыты с другими партиями реактивов, Пойдок и ее коллеги перестали получать эффект подавления опухолей. Тем не менее, она не сдалась, как это обычно делают большинство исследователей. Её интуиция ей подсказывала, что что то здесь не то.
Следует понимать, что исследователь работает с очень сложной многофакторной системой, когда могут быть легко упущены ряд факторов. Интуиция её подсказывала, что надо искать причину почему нет воспроизводимости опыта. В лаборатории осталось немного аскорбиновой кислоты, которая была использована для первого удачного опыта. Химический анализ показал, что препарат был не очень хорошим, значительная часть АК была окислена и превратилась в дегидроаскорбиновую кислоту. Было выдвинуто предположение, что механизм подавления опухолей связан не с аскорбиновой кислотой, а ее окисленной формой. Это и было подтверждено в ближайших проверках. Именно в экспериментах где принималась Дегидро-АК результаты надежно возобновлялись.
Результаты исследований были опубликованы в 80-х и начале 90-х годов ХХ века. Наиболее полное их описание было приведено в 1991 году, в журнале американской ассоциации клинического питания. Обнадеживающие результаты были получены по лейкемии (раку крови). Все 100 контрольных мышей, которым перевивали штамм опухолевых клеток P388 полностью вымирали к 17 дню эксперимента, а смертность в сотне опытных мышей в это время была нулевой. Они начинали умирать только на 32 день. К 35-му дню погибала примерно половина, а те, что выжили, были свободны от раковых клеток. Более агрессивный штамм лейкемии L1210 убивал контрольных мышей за 13 дней, но выживаемость в опыте также была около 50%. Эффективность лечения твердых (солидных) опухолей была значительно выше. Из 50 мышей зараженных карциномой Кребса удалось вылечить 48, мыши, зараженные карциномой Эрлиха, были вылечены полностью.
Фарминдустрия тоже не проявила интерес к выпуску дешевого и эффективного лекарства от рака. Одиночки-медики продолжали пробовать лечить рак витамином С, не вникая особенно в теоретические основы. Однако именно их активность начала приносить плоды в последнее время. Лишь немногие исследователи занялись анализом того, что получилось в результате экспериментов Пойдок и, главное, поиском механизмов полученных эффектов. Наиболее преуспел в этом исследователь из Канады Джон Тьюэ (Toohey). Его итоговая работа была напечатана в «Cancer letters» в 2008 году.
Доказательная клиническая база лечебных свойств АК
Медики чаще в АК ищут как средство дополнительное, снижающее побочное действие химиотерапии, но не хотят в нем искать средство первого плана лечения.
Описан случай полного выздоровления 75-летней женщины, у которой опухоль печени дала многочисленные метастазы в легкие. Эффект был получен после десятимесячного введения в вену высоких доз аскорбиновой кислоты.
Девять успешных опытов описали доктора-онкологи из Сингапура в Integrative Cancer Therapies.
Возможные механизмы лечебного действия АК на опухоль
Гипотетически выдвинута концепция, что аскорбиновая кислота стимулирует образование перекиси водорода в достаточно большом количестве в межтканевой жидкости. Именно это химическое соединение образуется в процессе взаимодействия витамина С и внутренней среды организма. Перекись является фактором или гормоном заводящим механизмы самоуничтожения и гибели онкоклеток. Эффект очевидно можно повысить путем сочетания с другими карбоновыми кислотами, например аскорбиновая, уксусная и «мертвой водой» сильной концентрации до 1200 мВ. Образование достаточных доз перекиси водорода вокруг онкоклеток и их апоптоз возможен только при достаточно мощном количестве приема указанных кислот и мертвой воды.
АК ускоряет и оптимизирует аэробный энергетический обмен в нормальных клетках, стимулирует тканевое дыхание и образование АТФ. В онкологических клетках аэробное дыхание отсутствует в митохондриях и заменено на гликолиз. АК при поступлении в онкоклетку ингибирует гликолиз, но не в силах перевести ее на путь нормальной аэробности. Энергетические возможности онкоклетки за счет подавления гликолиза ограничиваются. До конца потушить топку гликолиза АК очевидно тоже не в состоянии. Возможно это связано с конкурентным присутствием глюкозы. Для полного отключения гликолиза необходимо или полностью исключить доступ глюкозы, или чтобы в субстрате преобладала АК над глюкозой.
Нами выдвинута концепция, что в цитозоле АК будет проявлять разное физиологическое действие у здоровых и онкологических клеток, так как внутренняя среда у них разная. У здоровых клеток в малых количествах в цитозоле она проявляет защитные антиоксидантные свойства. В свою очередь у онкологических клеток при ее переизбытке она будет стимулировать процессы окисления, с образованием как перекиси водорода, так и липоперекисей, которые при переизбытке оказывают токсическое действие на клетки. Предполагаю, что перекись это «гормон» апоптоза. В то же время у здоровых клеток этот процесс прооксидации будет значительно меньше, так как среда в них другая и они не так агрессивны на поглощение углеводов, а значит и дегидроАК. Транспортные механизмы поглощения для обоих этих веществ в клетку одинаковы.
Перекись водорода в числе других сопутствующих ей молекул агрессивного воздействия вызывает сбой в функционировании определённого фермента, ответственного за «питание» клеток недоброкачественных опухолей.
Выяснено, что аскорбат, конечно, антиоксидант, но в присутствии двухвалентного железа окисляется до дегидроаскорбиновой кислоты, генерируя активные формы кислорода, которые повреждают мембраны, белки, ДНК, другие важные биомолекулы. То есть про- или антиоксидантное действие аскорбиновой кислоты зависит от биохимического контекста.
Одного HTL для того чтобы убить клетку мало. Тем не менее, Тьюэ обнаружил, что взаимодействуя с дегидроаскорбиновой кислотой это вещество образует высокотоксичный 3-меркаптопропионовый альдегид (MPA). То есть когда в раковую клетку, насыщенную HTL попадает дигидроаскорбиновая кислота, эти два безвредных соединения реагируют с образованием MPA, который и убивает раковые клетки. Разрушая раковые клетки, MPA ликвидирует и источник своего образования, поэтому нормальные клетки не сильно от него страдают. Можно сказать, что при лечении рака дегидроаскорбиновой кислотой получается что-то вроде бинарного боеприпаса, которыми увлекались военные химики.
Из выше приведенных данных следует, что для онкологии в первую очередь имеет значение Д-АК, а не АК. Так почему же ряд исследователей утверждают, что причиной неудачи лечения АК является прием ее в таблеточной форме? Приводятся доказательства, что нужны внутривенные инъекции, поскольку аскорбат довольно слабо всасывается из желудка.
От себя отмечу, что неусваиваемость АК не означает, что также не будет усваиваться и Д-АК. Вполне возможно, что именно эта форма и будет всасываться в нужном количестве. Нужны новые исследования этого.
От себя добавлю, что дегидроаскорбиновая кислота меньше должна раздражать желудок при приеме. В водных растворах, содержащих аскорбиновую кислоту и ионы меди и / или пероксид, аскорбиновая кислота быстро окисляется в дегидроаскорбиновую кислоту. Таким образом в домашних условиях легко перевести аскорбинку в дегидроаскорбинат. Аскорбиновая кислота имеет сильные кислотные свойства, дегидроаскорбиновая кислота утрачивает их, что и позволяет ее принимать значительно в больших количествах чем аскорбинку. Тогда напрашивается вывод, что правильнее принимать для наших целей именно Д-АК, а не аскорбинат, который в больших дозах трудно принимать, так как это кислота. Проще всего для этого водный раствор аскорбинки смешивать с перекисью.
Значение ретикулума для работы митохондрий. Очевидно градиент в эндоплазматическом ретикулуме при онкологии не достаточный, чтобы протянуть достаточно заряженный субстрат до митохондрий и подать ей стартерный сигнал для зажигания. Стартерный заряд электронов на митохондриях затухает и они начинают глохнуть. Повышают этот градиент работающие митохондрии, которые как пылесос натягивают в себя нужные заряды из протонов, вернее ионы с плюсовыми зарядами, тем самым задавая противоположный заряд на ретикулуме. Митохондрии как бы динамомашины, энергизатор всех клеточных структур, благодаря им все внутри сильно заряжено. А управляют их активностью система регулирующих операторных структур на внешней стороне мембраны клеток – так называемый «сенсорный дисплей». На нем имеются так же электрофильные белки, которые как конденсаторы конденсируют на себе еще более сильные заряды, чем он вокруг. Они определяют разницу потенциалов в межклеточной среде клеток и на стенках ретикулума. Ретикулум – это электрический контур, где очевидно по одной стороне мембраны скапливаются одни заряды, а по противоположной - другие. Таким образом, через ту или иную сторону ретикулума сигналы могут подаваться как внутрь клетки к митохондриям, так и от них наружу клетки. Следовательно ретикулум это электрическая сеть заряженная как плюсовыми, так и минусовыми зарядами. Ретикулум это и электротранспортер. Баланс зарядов с двух сторон ретикулума строго контролируется как активностью митохондрий, так и энергетическими операторными структурами на внешней стороне клетки – на цилиях. Эти белки при определенных ситуациях в окружающей среде клетки разряжаясь, могут давать активный сигнал на ретикулум и митохондрии. При этом меняется баланс существующих зарядов на одной из сторон ретикулума. Это ведет к сдвигу в химических процессах, запускаются многие новые реакции. Одна сторона мембраны ретикулума подключена к одному типу входа в митохондрии, а противоположная – к выходу из нее. Создается единая электрическая цепь. Создается цепь двойного активного управления энергетикой митохондрий.
Напомню как образуется заряд конденсатора. В момент подключения к источнику питания оказывается больше всего места на электродах, поэтому и ток зарядки будет максимальным, но по мере накопления заряда, ток уменьшаться и пропадет полностью после полного заряда. При зарядке на одной пластине будут собираться отрицательно заряженные частицы – электроны, а на другой – ионы, положительно заряженные частицы. Разрядка конденсатора заключается в следующем: если после окончания зарядки отключить источник питания и подключить нагрузку R, то он сам превратится в источник тока. Любые колебания ОВП на внешней стороне мембраны клеток сказывается и на состоянии ретикулума, когда он может сбрасывать заряд на митохондрии, управляя их активностью. Митохондрии в свою очередь настроены так, что никогда не позволяют снизиться зарядам на ретикулуме ниже критического уровня. В онкологических клетках заряды внутри митохондрий резко падают и вся система регулировки нарушается. Это стержень управления всей электрохимической энергетики клетки. Химические процессы всегда вторичны и ведомы ими. Поэтому неверно трактовать все процессы внутри клетки на уровне химических процессов.
Митохондрия работает путем затягивания из ретикулума в себя наподобие электромагнитного насоса необходимое под большим напряжением. Без этого высочайшего напряжения эффекта затягивания внутрь её не будет. Но начинается сопряжение работы мембранных систем митохондрии и ретикулума не в самой клетке, а и в соподчиненной им и регулирующей их работу операторной системы на внешней стороне мембраны клеток. Здесь в этот единый клубок саморегулировки включены так называемые цилии и конформационные белки. Вся эта система работает как единый замкнутый контур. В этой единой системе саморегулировки чаще всего страдают цилии. У онкоклеток в отличие от нормальных нет цилий! Целый этаж настройки энергетики клетки отсутствует.
Надежды на разработку методов репарации онкоклеток с восстановлением в них операторных структур не оправдывают себя. Это связано с тем что методы направленные на репарацию, самовосстановление одновременно здесь включают и механизмы «росткового эффекта» на онкоклетках. Обойти этот ростковый эффект и задать механизм репарации пока недостижимо. Единственно правильный путь это найти слабое место онкоклеток и за счет этого их уничтожать.
В случае отключения митохондрий градиент протягивания резко уменьшается. Митохондрии это наиболее эффективные электро-химические топки. Только в их условиях возможно достичь полного аэробного процесса энергетики. Если до митохондрий нет протягивания субстрата, то он начинает срабатывать на уровне эндоплазматического ретикулума, который по своей природе не может раскачать высокоэффективную кислородную энергетику. Энергетика клетки падает до примитивной гликолизной энергетики. Возможности этой топки на много меньше, огонь энергетики здесь идет не как в доменной печи, а как на дровяной примитивной печи, причем по всей площади ретикулума, то есть размазано, как бы низовой, тлеющий огонь, но по гораздо большей площади, что позволяет сжигать много глюкозы или других субстратов типа кетонов. Высокой степени сгорания здесь нет и огромный выхлоп продуктов полураспада. Онкоклетка берет не качеством (сконцентрировано все на малой площади митохондрий при высоких электропотенциалах), а количеством площади окисления-сгорания на стенках сети ретикулума. Поэтому кислород такой клетке особо не нужен, но зато резко возрастает употребление глюкозы.
Особенности электрозарядов на эндоплазматическом ретикулуме здоровых и онколеток. У здоровых клеток Д-АК поступая в ЭПР не будет восстанавливаться до АК, так как рН и ОВП (окислительно-восстановительный потенциал) здесь ей для этого не подходят, а Д-АК для них будет практически безвредна и трансформироваться на глюкозном конвейере. По другому сценарию будут развиваться события в онкоклетках. Среда здесь перевосстановлена. Здесь восстановленная АК будет вести себя как диверсант в чужом доме, который старается по максимуму все сжечь и уничтожить. Военные действия уже идут не по внешней линии фронта, а глубоко в тылу врага, с употреблением огнеметов, которым и является перекисное окисление липидов (ПОЛ). Если реакция распространения начнет протекать бесконтрольно, могут произойти существенные разрушения с большими последствиями, к которым относятся токсичные липоперекиси, повреждение клеточных мембран, различных органелл, мутация нуклеиновых кислот, инактивация важных ферментов, разрушение питательных веществ и гибель клеток. Все внутри становится подобным дому выгоревшим дотла. Ясно что гибель клеток пойдет не по пути апоптоза, а откровенного некроза, что не есть лучший вариант развития событий. Очевидно здесь легче будет перенаправить процесс на путь апоптоза путем обогащения субстрата янтарной кислотой.
Почему онкоклетки тяготеют к дегидроаскорбинату? Онкоклетки, в отличие от здоровых клеток, многократно раз более настроены в первую очередь на поглощение глюкозы и при ее отсутствии или недостаточности они легко переключатся с помощью тех же транспортеров на поглощение дегидроаскорбината, что значительно повышает его общую эффективность применения при онкологии. Поэтому можно утверждать, что уменьшение конкуренции между глюкозой в пользу Д-АК увеличит возможности последней многократно. Тогда можно ожидать, что особо целесообразно применять Д-АК на фоне метода «Избирательного Голодания», предлагаемого нами впервые. Внутри клетки она удерживается при помощи редукции обратно в аскорбат, глутатион и другие тиолы. Свободный химический радикал семидегидроаскорбиновая кислота (SDA) также принадлежит к группе окисленных аскорбиновых кислот.
Аскорбинка в условиях внутриопухолевых клеток восстанавливает, а дегидроаскорбинат - окисляет. Следовательно перекос в сторону избытка Д-аскрбата в опухолях должен вызвать окислительный процесс, катаболизм, тогда как аскорбат должен был бы усиливать восстановительные процессы, а это способствует усилению синтеза и анаболизма, то есть росту опухоли. Итак, очевидно АК в онкоклетки в нативном виде не доходит, а поступает в виде Д-АК, а уже там преобразуется в АК. Поэтому для наших целей, очевидно, все равно что поставлять в организм: АК или Д-АК.
В нашем случае с энергетикой клетки тоже можно заявить: дайте мне рычаг и я сверну ось метаболизма как простой клетки, так и онкологической в нужном направлении.
Выше мы рассмотрели теоретическую возможность аскорбиновой кислоты образовывать перекиси. Но следует уточнить, что перекиси это продукт окисления, а аскорбинка наоборот восстанавливает. Следовательно неверно было бы развивать концепцию, что АК напрямую вызывая перекиси, стимулирует апоптоз.
В то же время известно, что в присутствии широко распространённого в растительных тканях фермента аскорбиноксидазы, или аскорбиназы, аскорбиновая кислота окисляется кислородом воздуха с образованием дегидроаскорбиновой кислоты и перекиси водорода. Очевидно такой же процесс должен происходить и в животным клетках. Тогда становится возможным объяснить откуда в них образуется перекись и становится возможным пользоваться концепцией, что избыток перекиси запускает какой-то механизм гибели клеток, но очевидно не апоптоз, а медленный некроз. Поэтому нет наличия мощного лавинообразного образования некротической ткани, что было бы заметно. Процесс гибели здесь идет медленно, безболезненно и схож на естественный апоптоз, так как и в том, и в другом случае гибель клетки инициируется изнутри.
Поэтому при различных видах кулинарной обработки пищи часть витамина С обычно теряется, аскорбиновая кислота обычно разрушается также и при изготовлении овощных и фруктовых консервов. Особенно быстро витамин С разрушается в присутствии следов солей, тяжёлых металлов (железо, медь).
Исследование восстанавливающих свойств аскорбиновой кислоты
Легко вступая в окислительно-восстановительные реакции, аскорбиновая кислота восстанавливает метиленовую синь, 2, 6-дихлорфенолиндофенол, железосинеродистый калий, азотнокислое серебро и другие вещества. Это свойство положено в основу качественных реакций на витамин С.
Структура и физиология Д-АК
Хотя существует натрий-зависимый транспортер витамина С, он в основном присутствует в специализированных клетках, тогда как переносчики глюкозы, особенно гексозные транспортеры 1, транспортируют витамин С (в окисленной форме, Д-АК) в большинство клеток, где обратная утилизации в аскорбат создает необходимый ферментный кофактор и внутриклеточный антиоксидант. Структурно Д-АК представляет собой 1,2,3-трикарбонил, являющийся слишком электрофильным для того, чтобы просуществовать в водном растворе дольше нескольких миллисекунд. Фактическая структура соединения, показанная в спектроскопических исследованиях, является результатом быстрого образования полуацеталя между 6-ОН и 3-карбонильными группами. Также наблюдается гидратация 2-карбонила. Срок жизни стабилизированных видов обычно составляет приблизительно 6 минут в биологических условиях. За этим следует разрушение вследствие необратимого гидролиза сложноэфирной связи, с дополнительной реакцией деградации. В результате кристаллизации растворов Д-АК образуется пентациклическая димерная структура неопределенной стабильности. Переработка аскорбата через активный транспорт DHA в клетки с последующим восстановлением и повторным использованием увеличивает способность человека к синтезу аскорбиновой кислоты из глюкозы.
Использование. Дегидроаскорбиновая кислота используется в качестве пищевой добавки витамина С. В качестве ингредиента косметических продуктов, дегидроаскорбиновая кислота используется для улучшения внешнего вида кожи. Дегидроаскорбиновая кислота используется в питательной среде клеточных культур, обеспечивая поглощение витамина С в таких типах клеток, которые не содержат транспортеры аскорбиновой кислоты. Некоторые исследования показывают, что применение дегидроаскорбиновой кислоты в качестве фармацевтического средства может обеспечивать защиту от повреждений нейронов после ишемического инсульта. В литературе содержится масса сообщений об антивирусном потенциале витамина С. В одном исследовании доказывалось, что дегидроаскорбиновая кислота имеет более сильный противовирусный эффект и другой механизм действия, чем аскорбиновая кислота.
Таким образом, многие случаи необъяснимого излечения от рака могут быть связаны именно с описанным Тьюэ механизмом, а внутривенные инъекции теоретически могут быть заменены пероральным, то есть через рот, приемом аскорбиновой кислоты.
При концентрации последней в плазме крови выше 1,4 мг на 100 мл (порог) выведение ее почками возрастает. Но величина этой пороговой концентрации очень индивидуальна. Почки попросту сбрасывают избыток АК. Если организм имеет способность удерживать более высокие дозы АК, то это и определяет ее возможности воздействовать на онкоклетки. Задача научиться удерживать высокие дозы. Думаю этому помогает недостаток глюкозы. Кроме того, она зависит от дозы препарата. После приема высоких доз выведение аскорбиновой кислоты с мочой увеличивается, и интенсивность экскреции может сохраняться еще некоторое время после возврата к нормальным ее количествам в пище, что приводит иногда к недостаточности витамина в организме. Некоторые лекарственные вещества, например амидопирин, увеличивают ее выведение.
Аскорбиновая кислота поддерживает активность восстанавливающих ферментов, участвующих во всасывании железа, его введении в гемм, сохранении железа в гемме двухвалентным, сохранении восстановленной формы фолиевой кислоты — тетрагидрофолиевой кислоты. Витамин С участвует в регуляции углеводного обмена, улучшая использование глюкозы и пировиноградной кислоты в цикле Кребса, а также активности катехоламинов, предохраняя от окисления и увеличивая их синтез.
Сочетание приема Д-АК с ПНЖК, то есть группы омега-3 кислот. Это дополнительно должно повысить синергизм обеих методик взятых по отдельности. Дело в том, что ПНЖК как полиненасыщенные кислоты при избытке АК особо активно будут выделять липоперекиси внутри клеток в отличие от других липидов. Эта горючая смесь АК с ПНЖК будет зажигательной смесью в первую очередь для онкоклеток.
Тем не менее, можно утверждать, что в этом процессе приоритет приобретет последствие переизбытка аскорбиновой кислоты, а янтарная кислота уменьшит пагубную побочку от онкопроцесса, улучшая качество жизни больного.
Похожие статьи
Биолог, дипломированный фитотерапевт, нутрициолог, кандидат биологических наук
Стаж 40 лет
Подробнее обо мне